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A model of  a gas-evolving production-type cell with a circularly perforated anode is described. A unit 
of  the model  was composed of  a disk cathode, a separator and a ring anode in turn. These were located 
in a cylindrical cell filled with solution. Primary current and potential distributions in the unit cell were 
computed by solving the Laplace equation in cylindrical coordinates by the finite element method. 
Geometric parameters determining the distributions were primarily the interelectrode distance and the 
percentage open area. Current distribution in the open part  was larger than that in a rectangular cell 
with the same geometric parameters because of  the cylindrically concentrated supply of  the current 
from the inner part  of  the ring and the back side of  the anode. The unit cell resistance was evaluated 
as a function of  the geometric parameters. It exhibited a linear variation of  the interelectrode distance 
and the square of  the percentage open area. There was, however, a slight dependence of  the percentage 
open area on the unit cell resistance and hence it is concluded that circularly perforated electrodes 
provide higher performance than louvre-type electrodes. 

Nomenclature 

d~ distance between the front side of the anode 
and the separator 

d2 thickness of the separator 
H height of the anode on a large scale 
I total current in the unit cell 
i current density 
p pitch, i.e. diameter of the cylindrical unit cell 
R unit cell resistance, defined by Equation 13 
R t total cell resistance in a cell on a large scale 
r radial length in the cylindrical coordinate 
s superficial surface area, given by Equation 2 
t thickness of the anode 
v test function 
W width of the anode in a cell on a large scale 
w width of the anode of the unit cell 

1. Introduction 

Evaluation of the current and the potential distri- 
butions in electrolytic cells is a classical electrochemi- 
cal problem and involves solution of the Laplace 
equation. The most basic work on this subject is the 
determination of the distribution in a rectangular cell 
involving the point-plane and the line-plane electrodes 
by Kasper [1]. Since his pioneering work, the math- 
ematical approach for the distribution has been 
directed to various kinds of model cells with more 
complicated geometries [2-5]. It has been extended to 
systems associated with overpotential [2-6], arrange- 

z axial length in the cylindrical coordinate 
d7 infinitesimal length on the boundary 

resistivity 
q5 potential 
4)* potential at the anode 
F linear integration contour 
f~ double integration space 
v length normal to the boundary 

Subscripts 

a anode 
c cathode 
cy cylindrical model 
rc rectangular model 
1 solution phase 
2 separator phase 

ment of current feeders for resistive electrodes 
[4, 7-11] and gas evolution [6, 12]. Most of these 
theoretical works have employed the Fourier trans- 
formation or the Schwarz-Christoffel transformation. 
The former is powerful for analysis in a ceil with 
three-dimensional rectangular enclosures, whereas the 
latter is helpful for calculation in a two-dimensional 
polygonal cell. Evaluation of the distribution in more 
complicated cell geometries,has to rely upon numeri- 
cal computation [13] such as the finite element method 
and the boundary element method. Since numerical 
methods rarely suffer because of geometrical com- 
plications [14] or intricate boundary conditions, they 
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Fig. 1. (a) Mode l  cell composed  of  an  anode  with circular perforat ions ,  a plate ca thode  (ha tched lines) and  a m e m b r a n e  (a dot ted  plate). 
(b) Hexagona l  uni t  celt extracted f rom the mode l  cell. The  hexagon  is app rox ima ted  as a cylinder (dotted curve in b). (c) A ha l f  cross  section 
of  the cylindrical model  cell. Revolu t ion  o f  D E F G  a r o u n d  the z-axis yields a uni t  anode.  

can be applied directly to computation in real cells by 
introducing a number of system parameters [15]. 
However, there is the possibility of missing a systematic 
variation inherent to a given parameter. 

To specify the effects of electrode geometry 
employed for industrial electrolysis on the current 
distribution and cell voltage, we have introduced a 
rectangular model for an electrode with open parts 
through which evolving gas is removed from the inter- 
electrode space [16]. We have further obtained cell 
resistances for the cases of the primary [16] and the 
secondary [17] current distributions and those of the 
gas-evolving electrode [18]. A significant conclusion of 
these studies is that the unit cell resistance increases 
with increase in the size of the open part. This effect of  
the open size has been experimentally examined at 
louvred, circularly perforated and flattened mesh elec- 
trodes [19]. Unfortunately, these electrode geometries, 
especially the circularly perforated electrode, are not 
reasonably represented by rectangular models that 
have been presented previously [14]. In this paper, we 
introduce a cylindrical model for the circularly per- 
forated electrode and evaluate the cell resistance due 
to the primary current distribution by the finite 
element method. 

2. Model cell 

Figure la illustrates a cell composed of a circularly 
perforated anode and a cathode plate, between which 
a separator or a membrane with uniform resistivity is 
mounted. It is assumed that the anode and the cathode 
are so conductive that a potential gradient does not 
occur in the electrodes. Since our concern is the cur- 
rent distribution in the vicinity of the anode or in 
the anolyte, we represent the series connections of 
resistance of the catholyte and the membrane by the 
equivalent resistance of the membrane. Thus the 
cathode is connected to adhere closely to the mem- 
brane in this model cell. When circularly perforated 
openings are arranged in a rigid hexagonal array, a 
hexagon can be regarded as a model unit cell, as 
illustrated in Fig. lb. If the hexagonal unit is 
approximated by a circular cylinder as shown by a 
dotted curve in Fig. lb, it corresponds to a revolution 
of the two-dimensional rectangular cell in Fig. lc, by 
taking the axis to be OB. A similar approximation 

has been used for the effects of attached bubbles on 
current distribution [20]. 

Significant geometric parameters for this model are 
the percentage open area, op, and the superficial 
surface area, s, defined, respectively, as 

op = 100 ~[(p - w)/212 - 100[(p - w)/p] 2 (1) 
~(p/2) 2 

2~{(p/2) 2 -- [(p - w)/2] 2} + ~(p - w)t 
S = ~(p/2) 2 

2w(2p - w) + 4(p - w)t 
p2 (2) 

This open area ratio (Op/100) is the square of that for 
the rectangular model. The superficial surface area is 
close to that for the rectangular model when Op and t 
are small. Conversely, for large values of Op, it 
becomes twice the superficial surface area of the 
rectangular model. 

3. Computation of current distribution 

It is asumed that the solution has uniform resistivity 
over the phase. Then the potential, q~, is expressed by 
the Laplace equation in cylindrical coordinates both 
in the solution and the membrane phases 

6q2ff)/Or 2 Jr- (1/r)(aO/Or) + ~2ffo/Oz2 = 0 (3) 

The following boundary conditions are used. The 
potentials at the anode and the cathode are taken to 
be qS* and 0, respectively. At the boundary between 
the cathode and the membrane the potential is con- 
tinuous across both phases, and the current densities 
on both sides of the boundary are identical, i.e. on the 
side AH 

q5 2 = ~b, (4) 

(~4 , , /&)~ ,  = (~4,2/&)/~2 (s)  

On the side of the insulated walls, the potential 
vanishes. 

Multiplying Equation 3 by a test function, v, and 
2nr, integrating the resulting equation with respect to 
r and z over the membrane and the solution phases, 
and applying Green's theorem yields 

fI-o I V267 + frA. V2dy + fn2 U drdz = 0 (6) 

frDEFoV~dV+fr, VldV+ f n U d r d z  = 0 (7) 
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Fig. 2. Equi-potential contours (a) in the cylindrical cell ( ) 
revolved around axis OB and in the rectangular cell ( - - - ) .  Digits 
on the contours denote values of  0/~b*, which correspond to an 
anode potential of 1 and a cathode potential of  0. The contours were 
computed for the triangularly partitioned unit cell (b) with the 
following geometrical parameters: dL/p = 0.5, d2/p = 0.05, w/ 
p = 0.5, tip = 0.5, b/p = 0.75 and Q2/& = 2.0. 

where 

Vk = vr(~Ok/~v) (k = 1, 2) (8) 

U = r[(Ov/Or)(O4/~r) + (Ov/Qz)(~4/Oz)] (9) 

Multiplying Equations 6 and 7 by 0t and 42, respec- 
tively, and adding them by the use of Equation 5 leads 
to 

e2 fr~o via7 + 0, fro V~d~ 

= 0 2 f f n  U d r d z  + & f f n 2 U d r d z  (10) 

Equation 10 has a form facilitating computation 
using the finite element method. The integrals in 
Equation 10 were rewritten as matrices [21] by using 
the simplest linear functions at triangular elements. 
The numbers of nodes and elements were 150-200 and 
250-300, respectively. The resulting matrices were a 
set of simultaneous linear equations for ~b. Unknown 
values of ~b were determined using a 16-bit personal 
computer, PC9801 (NEC, Tokyo). The computation 
time was 10-20 s at each cell geometry. 

The current density at the anode, i~, is expressed by 

ia = (O(/),/~v)/o, (11) 

on DEFG. The total current at the anode is given by 

I~ = (2rt/O') o,D["era vr(c~O'/6qv)dy (12) 

4. Current and potential distributions 

Figure 2a shows equi-potential contours computed 
by the finite element method for an assembly of tri- 
angular elements as illustrated in Fig. 2b. Equi- 
potential contours in the domain AFGH are almost 
parallel to AH and exhibit linear potential gradients. 
In the other domain of the solution phase, they are 
curved owing to the open part of the anode. Of 
interest is comparison of the contours in the cylin- 
drical cell ( ) with those in the rectangular one 
( - - - ) .  The potential gradient in the domain ABF of 
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Fig. 3. Distributions of dimensionless current density at the anode 
and the cathode in the cylindrical cell ( ) and the rectangular cell 
( - - - )  with the same geometry as in Fig. 2. 

the cylindrical cell is larger than in the rectangular 
one. This fact is ascribed to concentration of the current 
into the open part from the cylindrical side, EF. 

Figure 3 shows distribution of the dimensionless 
current densities at the anode (i~) and at the cathode 
(it). As expected from Fig. 2a, the current density at 
the cathode is distributed uniformly. It is, however, 
non-uniform when dl is small without the membrane, 
as has been shown in Fig. 3 of Ref. [14]. The cathode 
current density near the open part or at the left of OI 
in the cylindrical cell ( ) is slightly larger than that 
in the rectangular cell (- - -) because of a cylindrically 
concentrated supply of the current from sides EF and 
DE. On the other hand, the current density at the 
anode is non-uniform, and especially the current den- 
sity at F is infinite for primary current distribution 
because of the acute edge. The anode current density 
in the cylindrical cell is smaller than that in the rectan- 
gular one. This can be explained by the value of the 
superficial surface area in the cylindrical cell (s = 2.5) 
being larger than that for the rectangular one 
(s = 2.0). Apparent inconsistency that ic.cy > i  .... 
regardless of - ia,~y < - i,,rc is ascribed to Soy > sr~ or 
the large ratio of the cylindrical anode area to the 
rectangular anode area. The ratio, i~.cy/ia .... decreases 
with increase in the distance from the point F. 

We obtained partitions of the total current into the 
currents on the three sides, DE, EF and FG, and 
plotted them against op for 02/0~ = 1 ( ) and 100 
( . . . .  ) in Fig. 4 for small values of dl (p/2). With an 
increase in O2/&, the partition on side FG decreases 
because the current distribution in the membrane 
becomes uniform. Variations of the partitions with op 
were linear for the EF and FG sides and had slight 
dependence on the superficial surface area for 
1.7 < s < 2.5. These trends have also been observed 
in the rectangular cell (e.g. in Fig. 5 of Ref. [14]) when 
s > 1.7. For large values of s, the linear relation 
between op and the partitions may hold generally 
because most of the current through FJ in Fig. lc is 
attributed to side EF. Figure 4 also shows the par- 
tition for the rectangular cell 02/0~ = 1 (- - -) and 100 
( . . . . . . .  ). The partition on side EF in the cylindrical 
cell is larger than that in the rectangular cell at the 
same value of O2/&- However, dependence of the 
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Fig. 4. Partition o f  the total currents into the three sides of  DE,  EF  
and F G  at s = 2.0 in the cylindrical model at Q2/Q~ = 1 ( ) and 
100 ( . . . .  ) and the two-dimensional  rectangular model  at ~o 2/ffJ = 1 
( - - - )  and 100 ( . . . . . . .  ) when d, /p  = d2/p = 20. I t  is worthwhile  
to note that  the pattern of  the cross section for the cylindrical model  
is different f rom that for the rectangular one in spite of  a co mmo n  
value of  s. 

partitions on Q2/~ in the cylindrical cell is less than 
that in the rectangular one. 

5. Unit cell resistance 

The unit cell resistance, R, is defined by 

R = 4,*/Z (13) 

In Fig. 5, the dimensionless unit cell resistance, 
R(p/2)/O~, is plotted against op in cells without (a-e) 
and with (f-i) the membrane for various combinations 
old1, d2 and O2/Q~. Curves g and h are very similar to 
d and e, respectively, indicating that the resistance of 
the interelectrode gap can be represented by the series 
connection of the resistance of the membrane and that 
of the solution in the interelectrode domain. Vari- 
ations of the resistance with Op are much smaller than 
those for the rectangular cell (see Fig. 4 of Ref. [14]). 
The minor effect of the op on the resistance suggests 
that the open part with the radius FJ in Fig. 1 c might 
play the same role in electrolysis as the ring anode, 
FG. In other words, the cylindrical side EF supplies 
the current to the open part as if side FJ were a 
uniform current source. Therefore, the perforation 
does not appreciably increase the cell resistance, but 
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Fig. 5. Variat ions of  unit cell resistance with the percentage open 
area for s = 2.0 in the cell wi thout  membrane  (a-e) at d I /(p/2)  = 
(a) 0.125, (b) 0.25, (c) 0.5, (d) 1.0 and (e) 2.0. Curves f-i are in the 
cell with the membrane  having ~o2/~o I = 10 at (dl/(p/2),  d2/(p/2)) = 
(f) (0.225, 0.025), (g) (0.45, 0.05), (h) (0.9, 0.1) and (i) (1.8, 0.2). 

does promote removal of evolving gases out of the 
interelectrode region. 

In order to examine quantitatively the effect of the 
open part, we derived a simple approximate equation 
for the unit cell resistance, which is given by 

R ----- ( e l d [  -]- ~o2d2)/{n(p/2) 2} 

+ O.065(op/lOO)2o~/(p/2) (14) 

This equation has errors less than 3% for op < 64% 
and d~/p > 0.1. These conditions are in the available 
domain for conventional perforation. In the rectan- 
gular cell, the coefficient in the second term is 0.33 
instead of 0.065. The smaller value for the cylindrical 
model indicates that the effect of the perforated open 
part on the resistance is only one-fifth of that in the 
rectangular cell. 

6. Effect of  pitch on total cell resistance 

In a large-scale industrial cell, which may be regarded 
as an assembly of many rectangular unit cells, the 
resistance in large cells with a louvre-type electrode 
decreases with decreasing pitch [19]. It has been 
theoretically demonstrated that decreasing the pitch 
leads to a decrease in the cell resistance [16]. We 
attempted to examine whether this relation is also 
applicable to large-scale perforated electrodes. Rigidly 
assembling the polygonal unit cells so that the height 
and width of the anode are H and W, respectively, 
gives the expression for the cell resistance on a large 
scale 

R~ = ~R(p/2)2/(HW) 

= {~o]d 1 -t- ~2d? + O. l O ( o p / l O O ) 2 ~ o l p } / ( H W )  

(15) 

The dependence of Rt on p is three-fifths as much 
as that for the rectangular model. Therefore, making 
the unit cell small decreases linearly the total 
cell resistance. This finding has been demonstrated 
experimentally in Fig. 5 of  Ref. [17]. 

7. Conclusion 

A loss of the front part (corresponding to FG side) of 
the electrode due to the perforation is compensated by 
a supply of the current from the cylindrical side EF. 
Therefore the increase in the unit cell resistance due 
to the perforation is not significant, suggesting that 
the perforation would raise performance of the cell 
since it promotes removal of gas bubbles. This is not 
the case for the rectangular model cell exemplified by 
a louvre-type electrode. Thus, circularly perforated 
electrodes provide higher performance than louvre- 
type electrodes from the viewpoint of cell voltage 
when compared with cells having the same values of 
Op and s. When constructing a perforated electrode, 
we encounter the question of which is a higher per- 
formance electrode - one with a large number of 
small openings or one with a small number of large 
openings. The former provides higher performance so 
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l o n g  as on ly  the  p r i m a r y  cu r r en t  d i s t r i b u t i o n  is 

conce rned .  
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